<table>
<thead>
<tr>
<th>SUBJECT</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction To Servicing</td>
<td>8-3</td>
</tr>
<tr>
<td>Publications</td>
<td>8-3</td>
</tr>
<tr>
<td>Airplane Inspection Periods</td>
<td>8-3</td>
</tr>
<tr>
<td>Special Conditions Cautionary Notice</td>
<td>8-3</td>
</tr>
<tr>
<td>Preventive Maintenance That May Be Accomplished By A Certificated Pilot</td>
<td>8-4</td>
</tr>
<tr>
<td>Alterations Or Repairs To Airplane</td>
<td>8-4</td>
</tr>
<tr>
<td>Ground Handling</td>
<td>8-4</td>
</tr>
<tr>
<td>Towing</td>
<td>8-4</td>
</tr>
<tr>
<td>Parking</td>
<td>8-4</td>
</tr>
<tr>
<td>Tie-Down</td>
<td>8-4</td>
</tr>
<tr>
<td>Jacking And Leveling</td>
<td>8-5</td>
</tr>
<tr>
<td>Prolonged Out-Of-Service Care</td>
<td>8-5</td>
</tr>
<tr>
<td>Engine Care In Salty Environments</td>
<td>8-5</td>
</tr>
<tr>
<td>Servicing</td>
<td>8-5</td>
</tr>
<tr>
<td>External Power</td>
<td>8-5</td>
</tr>
<tr>
<td>Battery</td>
<td>8-6</td>
</tr>
<tr>
<td>Battery Overheat Factors</td>
<td>8-6</td>
</tr>
<tr>
<td>Maintenance Practices To Prevent Battery Overheating</td>
<td>8-6</td>
</tr>
<tr>
<td>Tires</td>
<td>8-6</td>
</tr>
<tr>
<td>Shock Struts</td>
<td>8-7</td>
</tr>
<tr>
<td>Nose Gear Strut</td>
<td>8-7</td>
</tr>
<tr>
<td>Main Gear Strut</td>
<td>8-7</td>
</tr>
<tr>
<td>Brake System</td>
<td>8-7</td>
</tr>
<tr>
<td>Oil System</td>
<td>8-7</td>
</tr>
<tr>
<td>Changing The Engine Oil</td>
<td>8-8</td>
</tr>
<tr>
<td>Oil Filter Servicing</td>
<td>8-8</td>
</tr>
<tr>
<td>Fuel System</td>
<td>8-8</td>
</tr>
<tr>
<td>Fuel Handling Practices</td>
<td>8-8</td>
</tr>
<tr>
<td>Filling The Tanks</td>
<td>8-9</td>
</tr>
<tr>
<td>Fuel Grades And Types</td>
<td>8-9</td>
</tr>
<tr>
<td>Draining The Main Fuel System</td>
<td>8-9</td>
</tr>
<tr>
<td>Draining The Auxiliary Fuel System</td>
<td>8-9</td>
</tr>
<tr>
<td>Engine Fuel Filters And Screens</td>
<td>8-9</td>
</tr>
<tr>
<td>Cleaning Firewall Fuel Filters and Engine Driven Fuel Pump Filter</td>
<td>8-9</td>
</tr>
<tr>
<td>P3 Air Filter</td>
<td>8-10</td>
</tr>
<tr>
<td>Instrument Vacuum Air</td>
<td>8-10</td>
</tr>
<tr>
<td>Servicing The Oxygen System</td>
<td>8-10</td>
</tr>
<tr>
<td>Oxygen Components</td>
<td>8-10</td>
</tr>
<tr>
<td>Oxygen System Purging</td>
<td>8-10</td>
</tr>
<tr>
<td>Filling The Oxygen System</td>
<td>8-10</td>
</tr>
<tr>
<td>Oxygen Cylinder Retesting</td>
<td>8-10</td>
</tr>
<tr>
<td>Air Conditioner</td>
<td>8-11</td>
</tr>
<tr>
<td>Cabin Air Filters</td>
<td>8-11</td>
</tr>
<tr>
<td>Forward Evaporator Filter Replacement</td>
<td>8-11</td>
</tr>
<tr>
<td>Aft Evaporator Filter Replacement (When Opt. Evaporator Installed)</td>
<td>8-11</td>
</tr>
<tr>
<td>Return Air Filter Replacement</td>
<td>8-11</td>
</tr>
<tr>
<td>Deicing and Anti-Icing of Airplanes On The Ground</td>
<td>8-11</td>
</tr>
<tr>
<td>Snow Removal</td>
<td>8-11</td>
</tr>
<tr>
<td>Frost Removal</td>
<td>8-12</td>
</tr>
<tr>
<td>SUBJECT</td>
<td>PAGE</td>
</tr>
<tr>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>Ice Removal</td>
<td>8-12</td>
</tr>
<tr>
<td>Deicing and Anti-Icing Fluid Application</td>
<td>8-12</td>
</tr>
<tr>
<td>Miscellaneous Maintenance</td>
<td>8-12</td>
</tr>
<tr>
<td>Cleaning</td>
<td></td>
</tr>
<tr>
<td>Exterior Painted Surfaces</td>
<td>8-12</td>
</tr>
<tr>
<td>Windows And Windshields</td>
<td>8-13</td>
</tr>
<tr>
<td>Windows</td>
<td></td>
</tr>
<tr>
<td>Polarized Cabin Windows</td>
<td>8-13</td>
</tr>
<tr>
<td>Windshields</td>
<td></td>
</tr>
<tr>
<td>Surface Deice Boot Cleaning</td>
<td>8-14</td>
</tr>
<tr>
<td>Engine</td>
<td></td>
</tr>
<tr>
<td>Interior Care</td>
<td>8-14</td>
</tr>
<tr>
<td>Ice Vanes (Inertial Separator System)</td>
<td>8-14</td>
</tr>
<tr>
<td>Resetting Override Assembly For Normal Operation</td>
<td>8-14</td>
</tr>
<tr>
<td>Consumable Materials</td>
<td>8-14</td>
</tr>
<tr>
<td>Lamp Replacement Guide</td>
<td>8-15</td>
</tr>
</tbody>
</table>
INTRODUCTION TO SERVICING

The purpose of this section is to outline to the Owner and Operator the requirements for maintaining the Super King Air B200 & B200C in a condition equal to that of its original manufacture. This information sets the time intervals at which the airplane should be taken to a Raytheon Aircraft Authorized Outlet for periodic servicing or preventive maintenance.

The Federal Aviation Regulations place the responsibility for the maintenance of this airplane on the Owner and the Operator, who should make certain that all maintenance is done by qualified mechanics in conformity with all airworthiness requirements established for this airplane.

All limits, procedures, safety practices, time limits, servicing and maintenance requirements contained in this handbook are considered mandatory.

Raytheon Aircraft Authorized Outlets can provide recommended modification, service, and operating procedures issued by both FAA and Beech Aircraft Corporation, which are designed to get maximum utility and safety from the airplane.

If a question arises concerning the care of the Super King Air B200 & B200C, it is important that the airplane serial number be included in any correspondence. The serial number appears on the Manufacturer’s Identification Plaque, located either on the aft frame of the airstair door opening, or on the fuselage exterior, left side, aft of the airstair door.

WARNING

The Beech Super King Air B200 & B200C is a pressurized airplane. Drilling, modification, or any type of work which creates a break in the pressure vessel is considered the responsibility of the owner or facility performing the work. Obtaining approval of the work is, therefore, their responsibility.

PUBLICATIONS

The following publications for the Super King Air B200 & B200C are available through Raytheon Aircraft Authorized Outlets:

2. Pilot's Check List
4. Component Maintenance Manual (Includes Supplier Data)
5. Structural Inspection and Repair Manual
8. Parts Catalog
9. Service Instructions and Service Bulletins

The following publications will be provided, at no charge, to the registered owner/operator of this airplane:

- Original issues and revisions of Raytheon Aircraft Service Bulletins.

The above publications will be provided to the registered owner/operator at the address listed on the FAA Aircraft Registration Branch List or the Raytheon Aircraft Domestic/International Owners Notification List. Further, the owner/operator will receive only those publications pertaining to the registered airplane serial number. For detailed information on how to obtain "Revision Service" applicable to this handbook or other Raytheon Aircraft Service Publications, consult any Raytheon Aircraft authorized outlet, or refer to the latest revision of Raytheon Aircraft Service Bulletin No. 2001.

AIRPLANE INSPECTION PERIODS

Refer to the following for required inspections:

1. Structural Inspection and Repair Manual

NOTE

The FAA may require other inspections by issuance of Airworthiness Directives applicable to the airplane, engines, propellers, and components. It is the responsibility of the owner/operator to ensure that all applicable Airworthiness Directives are complied with, and when repetitive inspections are required, to prevent inadvertent noncompliance with subsequent inspection requirements. It is also the responsibility of the owner/operator to ensure that all FAA-required inspections and most Raytheon-recommended inspections are accomplished by properly certificated mechanics at properly certificated agencies (both meeting FAR 91 and FAR 43 requirements). Consult a Raytheon Aircraft Authorized Outlet for assistance in determining and complying with these requirements.

SPECIAL CONDITIONS CAUTIONARY NOTICE

Airplanes operated for Air Taxi or other than normal operations and airplanes operated in humid tropics or cold and damp climates, etc., may need more frequent inspections for wear, corrosion, and/or lack of lubrication. In these areas,
periodic inspections should be performed until the operator can set his own inspection periods based on experience. The required periods do not constitute a guarantee that the item will reach the period without malfunction, as the aforementioned factors cannot be controlled by the manufacturer.

PREVENTIVE MAINTENANCE THAT MAY BE ACCOMPLISHED BY A CERTIFICATED PILOT

A certificated pilot may perform limited maintenance. Refer to FAR Part 43 for the items which may be accomplished. To ensure that proper procedures are followed, obtain a *Beech Super King Air 200 Series Maintenance Manual* prior to performing preventive maintenance. All other maintenance must be performed by properly certificated personnel. Contact a Raytheon Aircraft Authorized Outlet for further information.

NOTE
Pilots operating airplanes of other than U. S. registry should refer to the regulations of the country of registry for information on preventive maintenance that may be performed by a pilot.

ALTERATIONS OR REPAIRS TO AIRPLANE

The FAA should be contacted prior to any alterations on the airplane, to ensure that the airworthiness of the airplane is not violated.

NOTE
Alterations or repairs to the airplane must be accomplished by properly licensed personnel.

GROUND HANDLING

TOWING

The tow bar connects to the upper torque knee fitting of the nose strut. The airplane is steered with the tow bar when moving the airplane by hand, or an optional tow bar is available for towing the airplane with a tug. Although the tug will control the steering of the airplane, someone should be positioned in the pilot's seat to operate the brakes in case of an emergency.

CAUTION
Always ensure that the control locks are removed before towing the airplane. Serious damage to the steering linkage can result if the airplane is towed while the control locks are installed. Do not tow the airplane with a flat shock strut.

The nose gear strut has turn limit warning marks to warn the tug driver when turning limits of the gear will be exceeded. Damage will occur to the nose gear and linkage if the turn limit is exceeded. The maximum nose wheel turn angle is 48° left and right. When ground handling the airplane, do not use the propellers or control surfaces as hand holds to push or move the airplane.

CAUTION
Do not exert force on the propellers or control surfaces. Do not place weight on the stabilizers to raise the nose wheel. When towing, limit turns to prevent damage to the nose gear. Do not tow the airplane backward using the tail tie down ring as an attach point.

PARKING

The parking brake may be set by pulling outward on the parking brake control, located on the extreme left side, below the pilot's subpanel, and depressing the toe portion of the pilot's rudder pedals. The parking control closes dual valves in the brake lines that trap the hydraulic pressure applied to the brakes and prevents pressure loss through the master cylinders. To release the parking brake, depress the pilot's brake pedals to equalize the pressure on both sides of the parking brake valves and push the parking brake control fully in.

NOTE
Avoid setting the parking brake when the brakes are hot from severe usage, or when moisture conditions and freezing temperatures could form ice locks.

CAUTION
The parking brake should be left off and wheel chocks installed while the airplane is unattended. Changes in ambient temperature can cause the brakes to release or to exert excessive pressures.

TIE-DOWN

Three mooring eyes are provided: one underneath each wing, and one in the ventral fin. To moor the airplane, chock the wheels fore and aft, install the control locks, and tie the airplane down at all three points. If extreme weather is anticipated, it is advisable to nose the airplane into the wind before tying it down. Install engine inlet and exhaust covers, propeller tie-down boots (one blade down), and pitot mast covers when mooring the airplane.

NOTE
Unrestrained propellers are apt to windmill. Prolonged windmilling at zero oil pressures can result in bearing damage. Windmilling propellers are a SAFETY HAZARD.
JACKING AND LEVELING

The Beech Super King Air B200 & B200C is provided with three jacking points to raise the airplane for servicing. The forward point is on the left side of the nose wheel well opening near the aft end of the nose wheel doors. The main gear points are on the rear spar just inboard of the nacelle fairing. All three points are easily identified by the placarding JACK PAD adjacent to the jack points. The areas around the jack pads are unobstructed to facilitate the use of jacks. All adapters extend 0.7 inch or more below the structure surface.

Leveling screws are located on the fuselage entrance door frame. Leveling is accomplished with a plumb bob. Jack pad leveling may require the nose-gear shock strut to be secured in the static position to prevent its extension. Wheel weighings can be leveled by varying the amounts of air in the shocks and tires.

PROLONGED OUT-OF-SERVICE CARE

Refer to the Beech Super King Air 200 Series Maintenance Manual.

ENGINE CARE IN SALTY ENVIRONMENTS

When the airplane is operated in a salty atmosphere (such as near the sea) or off airstrips treated with salt:

1. Wash engine exterior as soon as possible with clean water.
2. Start engine and run at ground idle for a minimum of 10 minutes to remove moisture and salt residue.
3. Spray rust preventive material on fuel control assembly, controls linkage assembly, and any exposed metal parts.
4. Inspect the entire gearcase for corrosion and spray with rust preventive material at one-week intervals. Pay particular attention to the areas around studs and inserts.

SERVICING

EXTERNAL POWER

The airplane is equipped with an external power receptacle, located just outboard of the right engine in the lower side of the wing center section. The receptacle will accept a standard AN-type plug. The airplane electrical system is automatically protected from reverse polarity (i.e., positive ground) by a diode network. A amber EXT PWR caution light on the caution/advisory annunciator panel will flash when the external power plug is engaged.

External power can be used to operate all the airplane electrical equipment (this includes avionics checkouts) during ground operations without the engines running, and it can be used to start the engines. The external power unit should be capable of producing 1000 amperes for 5 seconds, 500 amperes for 2 minutes and 300 amperes continuously. A maximum continuous load of 350 amperes will damage the external power relay and power cables of the airplane.

CAUTION

Any current in excess of 1000 amperes may overtorque the drive shaft of the starter-generator or produce heat sufficient to shorten the life of the unit.

The following precautions must be observed when using an external power source:

1. AVIONICS MASTER PWR Switch (pilot’s left subpanel) - OFF
2. GENerator 1 and GENerator 2 Switches - OFF
3. BATtery Switch - ON
4. Volt/Loadmeter (overhead panel) - DEPRESS SWITCH on face of either meter, and read battery voltage.

CAUTION

NEVER CONNECT AN EXTERNAL POWER SOURCE TO THE AIRPLANE UNLESS A BATTERY INDICATING A CHARGE OF AT LEAST 20 VOLTS IS IN THE AIRPLANE. If the battery voltage is less than 20 volts, the battery must be recharged, or replaced with a battery indicating at least 20 volts, before connecting external power.

5. Auxiliary Power Unit Output Voltage - SET AT 28.0 - 28.4 VOLTS
6. Auxiliary Power Unit - TURN OFF before connecting to airplane.

CAUTION

Only use an external power source fitted with an AN-type plug.

7. External Power Source Plug - PLUG INTO AIRPLANE RECEPTACLE
8. Auxiliary Power Unit - TURN ON
9. Volt/Loadmeter (overhead panel) - DEPRESS SWITCH on face of either meter, and read voltage. (If external power is properly connected, the value will be greater than it was when reading battery voltage only.)
BATTERY

Servicing the 24-volt, 20-cell, air-cooled, nickel-cadmium battery is normally limited to checking the electrolyte level, cleaning the battery box and associated components, and equalizing the cells. For detailed servicing of the battery, refer to the Beech Super King Air 200 Series Maintenance Manual.

The electrolyte in the nickel-cadmium battery is an alkali solution. Use equipment reserved for nickel-cadmium batteries only. Even minute traces of acid can damage a nickel-cadmium battery.

Add only distilled water when liquid level is low. The battery electrolyte level is related to the amount of electrical charge stored in the battery. When the charge is low, the electrolyte will appear to be low, therefore the distilled water should only be added when the battery is fully charged.

BATTERY OVERHEAT FACTORS

Battery overheating can be caused or accelerated by the following factors:

1. Frequent engine starts and excessive engine cranking.
2. Airplane generator bus voltage too high.
3. Improper charging.
4. Unnecessary use of the airplane battery to run auxiliary equipment such as lights, avionics equipment, ventilation systems, etc., during ground operations.
5. Loose cell-to-cell connectors (links).
6. Ground operations using power units with voltage settings higher than the recommended airplane bus voltage, or power units with poor regulation.

MAINTENANCE PRACTICES TO PREVENT BATTERY OVERHEATING

1. Service the battery at the interval recommended in the maintenance manual; however, more frequent servicing may be necessary, depending upon the type of operation to which the airplane is subjected.
2. The voltage regulators should be checked periodically for proper calibration, thereby reducing the possibility of overcharging and concurrent rise in battery temperature.
3. Keep battery loads to a minimum during extended ground operation.
4. Reduce the probability of localized heating of the cells by checking torque values of the cell-to-cell connectors.

5. Keep battery clean.

6. When charging the battery with an auxiliary power unit, observe the following:
 a. Provide adequate ventilation for the battery compartment.
 b. The auxiliary power unit voltage should not exceed the specified airplane voltage. Make certain the unit is well regulated and that its ammeters are accurate.
 c. Open the battery cavity during charging, to allow visual monitoring and increased ventilation.

TIRES

The airplane is equipped with dual tires on the main gear, and a single tire on the nose gear. The standard configuration features 18x5.5, 8-ply-rated (or optionally, 10-ply-rated) tubeless tires on the main gear, and a 22x6.75-10, 8-ply-rated tire is installed on the nose gear.

Airplanes equipped with the optional high flotation landing gear are equipped with 22x6.75-10, 8-ply-rated tubeless tires on the main gear and on the nose gear.

Tires that have picked up a film of fuel, hydraulic fluid, or oil should be washed down as soon as possible, in order to prevent deterioration of the rubber.

Maintaining proper tire inflation pressures will help prolong tire service life. Check tires frequently to maintain pressures within recommended limits, and maintain equal pressures on both tires of each dual-wheel installation. Proper inflation pressures will help avoid damage from landing shocks, contact with sharp stones and ruts, and will minimize tread wear. When inflating the tires, inspect them for cuts, cracks, breaks, and tread wear.

NOTE

This procedure is recommended only for those airplanes equipped with rim-inflated tubeless tires. The leak rate of tires to be sealed by this method should not exceed 5% over a 24-hour period.

Refer to the Beech Super King Air 200 Series Maintenance Manual for more detailed inspection and repair procedures.

Inflate the standard main wheel tires (18x5.5) to 96 ±2 psi. Inflate the optional high flotation main wheel tires (22x6.75-10) to 62 ±2 psi. Both the standard and high flotation configuration nose wheel tires should be inflated to between 55 and 60 psi.
NOTE
While Raytheon Aircraft Company cannot recommend the use of recapped tires, tires retreaded by an FAA-approved repair station with a specialized service-limited rating for TSO-C62c may be used.

SHOCK STRUTS
Servicing the shock struts is normally part of each 200-hour phase inspection procedure. If it becomes necessary to service the shock struts due to the leakage of either the hydraulic oil or the air, the following procedure should be followed:

WARNING
Release the air pressure entirely before removing the valve adapter.
NEVER FILL SHOCK STRUTS WITH OXYGEN.

NOSE GEAR STRUT
1. Release all of the air from the strut by depressing the core of the air valve on top of the strut.
2. Remove the air valve and wipe clean. With the strut fully compressed, the end of the filler neck on the air valve should touch the oil. If the oil is below this level, add approved hydraulic fluid. Reinstall and safety the air valve.
3. With the airplane empty except for full fuel and oil, inflate the nose gear until the inner cylinder is extended approximately 3 to 3.5 inches.

MAIN GEAR STRUT
1. Release all of the oil from the strut through the air valve, and remove the core from the valve.
2. Fully compress the strut and attach a small hose over the air valve and immerse the other end of the hose in hydraulic fluid. Slowly extending the strut will create a partial vacuum, thereby drawing the oil into the cylinder. Cycling the strut slightly as it is extended will expel any trapped air. Slowly return the strut to the fully compressed position; this will force the excess oil back into the container, and the strut will be properly filled with oil.
3. With the airplane empty except for full fuel and oil, inflate the strut until the inner cylinder is extended approximately 3.93 to 4.19 inches. If the optional high flotation gear is installed, inflate the strut until the inner cylinder is extended approximately 5.56 to 5.93 inches.

BRAKE SYSTEM
Brake servicing is limited to maintaining adequate fluid in the reservoir mounted on the bulkhead in the upper left corner of the nose avionics compartment. A dipstick is provided as part of the reservoir lid to measure the fluid level. When the fluid is low, add sufficient quantity of approved hydraulic fluid to raise the level to the full mark on the dipstick.

Brake assemblies are equipped with automatic adjusters to assure a positive clearance between disc and lining when the brakes are not applied.

Each wheel cylinder (except those airplanes equipped with optional brake deice) is provided with a means of conveniently checking brake wear. The distance between the piston housing and the lining carrier will increase with lining wear. When the distance exceeds 0.250 inch (as indicated by the accompanying illustration) the brakes should be replaced. This check should be accomplished with brake pressure applied. For more detail on servicing of the wheels and brakes, and airplanes equipped with brake deice, refer to the Beech Super King Air 200 Series Maintenance Manual.

OIL SYSTEM
Servicing the engine oil system primarily involves maintaining the engine oil at the proper level, inspecting and cleaning or replacing the filter element, and changing the oil as conditions require. See the Beech Super King Air 200 Series Maintenance Manual and Pratt and Whitney Service Bulletin 3001 for oil system servicing procedures and requirements.

CAUTION
Do not mix different brands of oil when adding oil between oil changes. Different brands or types of oil may be incompatible because of the difference in their chemical structures.

The oil tank is provided with an oil filler neck and quantity dipstick cap which protrude through the accessory gearcase at the eleven-o'clock position. The dipstick is marked in U.S. quarts and indicates the last five quarts required to bring the system up full. Access to the dipstick cap is gained through an access door on the aft engine cowl. Service the oil system with oil as specified in Pratt and Whitney SB 3001. Do not mix different oil brands together. Total oil tank capacity is 2.3 U. S. gallons. When a dry engine is first serviced, it will require approximately 5 quarts in addition to tank capacity to fill the lines and cooler, giving a total system capacity of 14 U.S. quarts (3.50 U.S. gallons). The engine will trap approximately 1.5 quarts which cannot be drained; therefore, when performing an oil change, refill the system with 12 quarts and add additional oil based on the dipstick reading. While the airplane is standing idle, engine oil could possibly seep into the scavenge pump reservoir, causing a low dipstick reading.

May, 2000
Anytime an engine has been shut down for 12 hours or more, or if the oil has just been changed, run the engine for at least two minutes before checking the oil level.

NOTE
The normal oil level is at the one quart mark. Overfilling may cause a discharge of oil through the breather until a satisfactory level is reached.

CAUTION
Spilled oil should be removed immediately to prevent possible tire contamination or damage.

CHANGING THE ENGINE OIL

CAUTION
When changing to a different brand of oil, completely drain the airplane oil system. Remove the oil filter and immerse it in the brand of oil to be used. Reinstall the oil filter and drain plugs. Fill the system to the proper level, and ground run the engine for 20 minutes to thoroughly circulate the new brand of oil throughout the system. Completely drain the airplane oil system and again remove the oil filter and immerse it in the new brand of oil. Refill the airplane oil system. This will prevent chemical interaction between it and the new brand.

Refer to the Beech Super King Air 200 Series Maintenance Manual for detailed procedures for changing the engine oil.

OIL FILTER SERVICING

The engine oil filter is located under the square coverplate at the three-o'clock position of the compressor inlet case and just behind the aft fire seal. The filter element should be replaced according to the time periods specified in the Beech Super King Air 200 Series Maintenance Manual.

CAUTION
This filter element is not cleanable and must be replaced if it has been subjected to ultrasonic cleaning, or heavy contamination from the engine oil system.

Light contaminants collected on the external protective screen may be removed by hand flushing the element with Varsol. The filter element may be removed, inspected, and replaced in accordance with the Beech Super King Air 200 Series Maintenance Manual.

FUEL SYSTEM

FUEL HANDLING PRACTICES

All hydrocarbon fuels contain some dissolved, suspended water. The quantity of water contained in the fuel depends on temperature and the type of fuel. Kerosene, with its higher aromatic content, tends to absorb and suspend more water than aviation gasoline. Along with the water, it will suspend rust, lint, and other foreign materials longer. Given sufficient time, these suspended contaminants will settle to the bottom of the tank. However, the settling time for kerosene is five times that of aviation gasoline. Due to this fact, jet fuels require good fuel handling practices to assure that the airplane is serviced with clean fuel. If recommended ground procedures are carefully followed, solid contaminants will settle and free water can be reduced to 30 parts per million (ppm), a value that is currently accepted by the major airlines. Since most suspended matter can be removed from the fuel by sufficient settling time and proper filtration, it is not a major problem. Dissolved water has been found to be the major fuel contamination problem. Its effects are multiplied in airplanes operating primarily in humid regions and warm climates.

Dissolved water cannot be filtered from the fuel with micronic type filters, but can be released by lowering the fuel temperature, such as will occur in flight. For example, a kerosene fuel may contain 65 ppm (8 fl oz per 1000 gallons) of dissolved water at 80°F. When the fuel temperature is lowered to 15°F, only about 25 ppm will remain in solution. The difference of 40 ppm will have been released as supercooled water droplets which need only a piece of solid contaminant or an impact shock to convert them to ice crystals. Tests indicate that these water droplets will not settle since the specific gravity of ice is approximately equal to that of kerosene. The 40 ppm of suspended water seems like a very small quantity, but when added to suspended water in the fuel at the time of delivery, is sufficient to ice a filter. While the critical fuel temperature range is from 0°F to -20°F, which produces severe system icing, water droplets can freeze at any temperature below 32°F.

Water in jet fuel also creates an environment favorable to the growth of microbiological sludge in the settlement areas of the fuel cells. This sludge, plus other contaminants in the fuel, can cause corrosion of metal parts in the fuel system as well as clogging of the fuel filters.

Since fuel temperature and settling time affect total water content and foreign matter suspension, contamination can be minimized by keeping equipment clean. Use adequate filtration equipment and careful water drainage procedures, store the fuel in the coolest areas possible, and allow adequate settling time. Underground storage is recommended for fuels. Filtering the fuel each time it is transferred will minimize the quantity of suspended contaminants carried by the fuel.
Raytheon Aircraft

The primary means of contamination control by the owner/operator is careful handling. This applies not only to fuel supply, but to keeping the airplane system clean. The following is a list of steps that may be taken to prevent and recognize contamination problems.

1. Know your supplier. It is impractical to assume that fuel free of contaminants will always be available, but it is feasible to exercise precaution and be watchful for signs of fuel contamination.

2. Assure, as much as possible, that the fuel obtained has been properly stored, filtered as it is pumped to the truck, and filtered again as it is pumped from the truck to the airplane.

3. Periodically flush the fuel tanks and systems. The frequency of flushing should be determined by the climate and the presence of sludge.

4. Use only clean fuel servicing equipment.

5. After refueling, allow a three hour settle period, whenever possible, then drain a small amount of fuel from each drain.

CAUTION

Fuel spills on tires have a deteriorating effect and the tires should be cleaned promptly.

FILLING THE TANKS

When filling the airplane fuel tanks, always observe the following:

1. Make sure the airplane is statically grounded to the servicing unit and that the airplane and servicing unit are both grounded to ground.

2. The main filler cap is located on top of the outboard wing section, and the auxiliary filler cap is located on top of the center wing section. Do not rest fuel nozzle in tank filler neck, because this may damage the filler neck.

CAUTION

Do not fill auxiliary tanks unless main tanks are full.

3. Allow a three-hour settle period whenever possible, then drain a small amount of fuel into a container from each drain point. Check fuel at each drain point for contamination.

FUEL GRADES AND TYPES

Aviation Kerosene Grades Jet A, Jet A-1, Jet B, JP-4, JP-5, and JP-8 may be mixed in any ratio. Aviation Gasoline Grades 80 (80/87), 100 (100/130), 100LL, and 115/145 are emergency fuels and may be mixed with the recommended fuels in any ratio; however, use of the lowest octane rating available is recommended. Operation on Aviation Gasoline shall be limited to 150 hours per engine during each time-between-overhaul (TBO) period. Refer to LIMITATIONS Section for additional limitations on the use of Aviation Gasoline.

CAUTION

Do not allow the fuel cells to dry out and crack. At a later servicing, the cracks would allow fuel to diffuse through the walls of the fuel cell. If any fuel cell is to remain empty for an extended interval, ensure that the fuel cells last contained jet fuel; if the fuel cells last contained aviation gasoline, coat them with oil.

DRAINING THE MAIN FUEL SYSTEM

A rapid defueling adapter is installed in the nacelle tank sump strainer. A valve in the adapter opens as a standard AN-type fuel connector is screwed into the adapter. This facilitates rapid, complete draining of the main fuel system.

DRAINING THE AUXILIARY FUEL SYSTEM

The auxiliary fuel system can be drained by either transferring it to the main system with the transfer system, or by draining it into a container by removing the drain plug located in the bottom of the auxiliary tank sump strainer.

The auxiliary tank need not be drained to replace the standby fuel pump.

ENGINE FUEL FILTERS AND SCREENS

NOTE

Inspect fuel filters and screens any time fuel that is suspected of contamination has been used. In addition to such precautions, all fuel filters and the tank should be cleaned any time the submerged boost pump is removed.

CLEANING FIREWALL FUEL FILTERS AND ENGINE DRIVEN FUEL PUMP FILTER

Refer to the Beech Super King Air 200 Series Maintenance Manual for cleaning and replacement of the firewall fuel filters.

Refer to the Pratt and Whitney Engine Maintenance Manual for the PT6A-41/42 engine for proper servicing procedures for the engine driven fuel pump screens and filters.

May, 2000
P3 AIR FILTER

An air filter is installed in the P3 air line between the gas generator case and the fuel control unit. The filter is located on the lower right side of the engine immediately aft of the rear fireseal mount ring. Inspect and/or replace in accordance with the Beech Super King Air 200 Series Maintenance Manual.

INSTRUMENT VACUUM AIR

Vacuum for the flight instruments is obtained by operating an ejector with bleed air from the engines. During operation, the ejector draws air in through the instrument filter and the gyros. A vacuum relief regulator valve regulates instrument pressure.

The instrument filter, located at the top of the avionics compartment, is of prime importance and should be replaced in accordance with the Beech Super King Air 200 Series Maintenance Manual, or more often if conditions warrant (smoky, dusty conditions).

The vacuum relief regulator valve, located on the forward pressure bulkhead in the bottom of the avionics compartment, is protected by a foam sponge type filter which should be cleaned in accordance with the Beech Super King Air 200 Series Maintenance Manual. If vacuum pressure rises above a normal reading, clean the filter and recheck vacuum pressure before attempting to adjust the valve.

SERVICING THE OXYGEN SYSTEM

OXYGEN COMPONENTS

Oxygen for unpressurized, high-altitude flight is supplied by a cylinder located in the compartment immediately aft of the aft pressure bulkhead. A 22-, 49-, 66-, 76-, or 115-cubic-foot cylinder may be installed. The oxygen system is serviced by a filler valve accessible by removing an access plate on the right side of the aft fuselage. The system has two pressure gages, one located on the right subpanel in the crew compartment for in-flight use, and one adjacent to the filler valve for checking system pressure during filling.

Refer to OXYGEN SYSTEM SCHEMATIC in Section VII, SYSTEMS DESCRIPTION.

A shutoff valve and regulator, located on the cylinder, controls the flow of oxygen to the crew and passenger outlets. The shutoff valve is actuated by a push-pull type control located aft of the overhead light control in the cockpit. The regulator is a constant-flow type which supplies low pressure oxygen through system plumbing to the outlets.

OXYGEN SYSTEM PURGING

Offensive odors may be removed from the oxygen system by purging. The system should also be purged anytime system pressure drops below 50 psi, or if a line in the system is opened. Purging is accomplished simply by connecting a recharging cart into the system and permitting oxygen to flow through the lines and outlets until any offensive odors have been carried away. The following precautions should be observed when purging or servicing the oxygen system:

1. Avoid any operation that could create sparks. Keep all burning cigarettes or fire away from the vicinity of the airplane when the outlets are in use.
2. Inspect the filler connection for cleanliness before attaching it to the filler valve.
3. Make sure that your hands, tools, and clothing are clean, particularly of grease or oil stains, for these contaminants are extremely dangerous in the vicinity of oxygen.
4. As a further precaution against fire, open and close all oxygen valves slowly during filling.

FILLING THE OXYGEN SYSTEM

When filling the oxygen system, only use Aviator’s Breathing Oxygen, MIL-O-27210.

WARNING

DO NOT USE MEDICAL or INDUSTRIAL OXYGEN. It contains moisture which can cause the oxygen valve to freeze.

Fill the oxygen system slowly by adjusting the recharging rate with the pressure regulating valve on the servicing cart, because the oxygen, under high pressure, will cause excessive heating of the filler valve. Fill the cylinder (22-cubic-foot cylinder installation) to a pressure of 1800 ± 50 psi at a temperature of 70°F. This pressure may be increased an additional 3.5 psi for each degree of increase in temperature; similarly, for each degree of drop in temperature, reduce the pressure for the cylinder by 3.5 psi. The oxygen system, after filling, will need to cool and stabilize for a short period before an accurate reading on the gage can be obtained. The 49-, 64-, 76-, or 115-cubic-foot cylinders may be charged to a pressure of 1850 ± 50 psi at a temperature of 60°F. When the system is properly charged, disconnect the filler hose from the filler valve and replace the protective cap on the filler valve.

OXYGEN CYLINDER RETESTING

Oxygen cylinders used in the airplane are of two types. Light weight cylinders, stamped “3HT” on the plate on the side, must be hydrostatically tested every three years and the test date stamped on the cylinder. This bottle has a service life of 4,380 pressurizations or 24 years, whichever occurs first, and then must be discarded. Regular weight cylinders, stamped “3A” or “3AA”, must be hydrostatically tested every five years and stamped with the retest date. Service life on these cylinders is not limited.
AIR CONDITIONER

If an extended period of time occurs during which the air conditioning system is not operated, moisture may condense and settle in the system low spots, resulting in corrosion of the refrigerant lines. Also, the system seals may dry out, shrink, and crack, due to the lack of lubrication. In order to protect the integrity of the system, the air conditioner should be operated at least 10 minutes every month.

CAUTION

Do not attempt to operate the air conditioner when the ambient temperature is below 10°C (50°F). If for several weeks it is impossible to obtain an ambient temperature of at least 10°C (50°F), the recommended monthly interval for operating the air conditioner may be extended somewhat.

For air conditioner system servicing information, refer to Beech Super King Air 200 Series Maintenance Manual.

WARNING

Refrigerant and oil are under pressure within the refrigeration system. Injury to personnel or damage to the system could occur if the maintenance is not performed properly. The refrigerant system should be serviced only by qualified air conditioner technicians.

CABIN AIR FILTERS

A flexible, fiberglass-type air filter covers the coils of the forward air conditioner evaporator. When an aft evaporator is installed, another flexible filter is used at the aft evaporator coils. A foam-rubber type recirculated-air filter is also installed over the return-air valve, at floor level forward of the copilot's rudder pedals. All these filters should be inspected in accordance with the Beech Super King Air 200 Series Maintenance Manual.

FORWARD EVAPORATOR FILTER REPLACEMENT

1. Remove the access door in the nose-wheel-well keel under the refrigerant plumbing.
2. Pull the filter down and out of the retaining springs on the evaporator coil.
3. Fold the new filter to insert it through the access doors. The filter must be carefully inserted between the coil assembly and the refrigerant plumbing under the retaining springs.
4. Replace the access doors.

AFT EVAPORATOR FILTER REPLACEMENT (WHEN OPT. EVAPORATOR INSTALLED)

1. Remove the carpet and floor panel behind the rear spar, and remove the cover of the evaporator plenum.
2. Remove the old filter from behind the retaining springs on the evaporator coil.
3. Insert the new filter between the retaining springs and the evaporator coil.
4. Replace the plenum cover, floor panel, and carpet.

RETURN AIR FILTER REPLACEMENT

1. Reach forward of the copilot's rudder pedals to the pressure bulkhead at floor level.
2. Pull out the two (left and right) flexible filters.
3. Insert one new filter into the left half of the channel on top of the filter support grill, and one into the right half.
4. Tamp the filters into place by hand and smooth them out.

DEICING AND ANTI-ICING OF AIRPLANES ON THE GROUND

Deicing is the removal of ice, frost, and snow from the airplane's exterior after it has formed. Anti-icing is a means of keeping the surface clear of subsequent accumulations of ice, snow and frost.

Snow and ice on an airplane will seriously affect its performance. Even formation of a smooth covering of ice on the wing will change the contour of the wing, producing an increase in drag and a reduction in effective lift coefficient. Frost or frozen snow may present an even greater hazard since the surface texture is rough and will seriously disrupt the smooth flow of air across the wing.

SNOW REMOVAL

The best way to remove snow is to brush it off with a squeegee, soft brush, or mop. Exercise care so as not to damage any components that may be attached to the outside of the airplane, such as antennas, vents, stall warning devices, etc. Remove loose snow from the airplane before heating the airplane interior; otherwise, at low temperatures, the snow may melt and refreeze to build up a considerable depth of ice. Never attempt to chip or break frozen snow from the airplane. If the airplane has been hangared and snow is falling, coat the airplane surfaces with an anti-icing solution; snow falling on the warm surface will have a tendency to melt, then refreeze.

After snow has been removed from the airplane, inspect the airplane for evidence of residual snow, particularly in the area of control surface gaps and in the hinge areas. Carefully inspect the static ports for evidence of obstruction. Check the exterior of the airplane for damage to external components that may have occurred during the snow removal operations.
Control surfaces should be moved to ascertain that they have full and free movement. The landing gear mechanism, doors, wheel wells, uplocks and microswitches should be checked for ice deposits that may impair function.

When the airplane is hangared to melt snow, any melted snow may freeze again if the airplane is subsequently moved into subzero temperatures. Any measures taken to remove frozen deposits while the airplane is on the ground must also prevent the possibility of refreezing of the liquid.

Following snow removal, should freezing precipitation continue, the airplane surface should be treated for anti-icing.

FROST REMOVAL

Heavy frost that cannot be removed by wiping with a gloved hand or soft towel must be removed by placing the airplane in a warm hangar or by the application of a deicing fluid.

After removal of all frost from the airplane exterior, check all external components for damage that may have occurred during frost removal.

ICE REMOVAL

Moderate or heavy ice and residual snow deposits should be removed with a deicing fluid. No attempt should be made to remove ice deposits or break an ice bond by force.

After completing the deicing process, the airplane should be inspected to ensure that its condition is satisfactory for flight. All external surfaces should be examined for residual ice or snow, particularly in the vicinity of control surface gaps and hinges. Static ports should be carefully inspected for any signs of obstruction.

Control surfaces should be moved to ascertain that they have full and free movement. The landing gear mechanism, doors, wheel wells, uplocks and microswitches should be checked for ice deposits that may impair function.

When the airplane is hangared to melt ice, any melted ice may freeze again if the airplane is subsequently moved into subzero temperatures. Any measures taken to remove frozen deposits while the airplane is on the ground must also prevent the possible refreezing of the liquid.

Following ice removal, should freezing precipitation continue, the airplane surface should be treated for anti-icing.

DEICING AND ANTI-ICING FLUID APPLICATION

Airplane deicing fluids may be used diluted or undiluted according to manufacturers recommendations for deicing. For anti-icing purposes, the fluids should always be used undiluted. Deicing fluids may be applied either heated or unheated. Refer to Section II, LIMITATIONS, for a listing of approved airplane deicing/anti-icing fluids.

NOTE

Type II and Type IV deicing fluids should only be applied at low pressure by trained personnel with proper equipment.

If a sprayer is not available, deicing fluid may be brushed or painted onto the airplane’s surface.

MISCELLANEOUS MAINTENANCE

CLEANING

EXTERIOR PAINTED SURFACES

Polyester urethane undergoes a curing process for a period of 30 days after application. Wash uncured painted surfaces with a mild non-detergent soap (MILD detergents can be used on urethane finishes) and cold or lukewarm water only. Use soft cloths, keeping them free of dirt and grime. Any rubbing of the surface should be done gently and held to a minimum to avoid damaging the paint film. Rinse thoroughly with clear water. Stubborn oil or soot deposits may be removed with automotive tar removers.

Prior to cleaning, cover the wheels, making certain the brake discs are covered. Attach the pitot cover securely, and plug or mask off all other openings. Be particularly careful to mask off all static air buttons before washing or waxing. Use special care to avoid removing lubricant from lubricated areas.

Hand washing may be accomplished by flushing away loose dirt with clean water, then washing with a mild soap and water, using soft cleaning cloths or a chamois. Avoid harsh, abrasive or alkaline soaps or detergents which could cause corrosion or scratches. Thorough clear-water rinsing prevents buildup of cleaning agent residue, which can dull the paint’s appearance. To remove oily residue or exhaust soot, use a cloth dampened with an automotive tar remover. Wax or polish the affected area if necessary.
WARNING

Do not expose elevator, rudder, and aileron trim tab hinge lines and their pushrod systems to the direct stream or spray of high-pressure soap-and-water washing equipment. Fluid dispensed at high pressure could remove the protective lubricant, allowing moisture from heavy or prolonged rain to collect at hinge lines, and then to freeze at low temperatures. After high-pressure or hand washing, and at each periodic inspection, lubricate trim tab hinge lines and trim tab pushrod end fittings (Brayco 300 per Federal Specification VV-L-800 preferred).

When using high-pressure washing equipment, keep the spray or stream clear of wheel bearings, propeller hub bearings, etc., and openings such as pitot tubes, static air buttons, and battery and avionics equipment cooling ducts which should be securely covered or masked off. Avoid directing high-pressure sprays toward the fuselage, wings, and empennage from the rear, where moisture and chemicals might more easily enter the structure, causing corrosion damage to structural members and moving parts.

CAUTION

When cleaning wheel well areas with solvent, especially if high-pressure equipment is used, exercise care to avoid washing away grease from landing gear components. After washing the wheel well areas with solvent, lubricate all lubrication points, or premature wear may result.

During the curing period, do not make prolonged flights in heavy rain or sleet, and avoid all operating conditions which might cause abrasion or premature finish deterioration.

CAUTION

Do not apply wax, polish, rubbing compound, or abrasive cleaner to any uncured painted surface. Use of such items can permanently damage the surface finish. Also, waxes and polishes seal the paint from the air and prevent curing.

Waxing of polyester urethane finishes, although not required, is permitted; however, never use abrasive cleaner type waxes, polishes, or rubbing compounds, as these products cause eventual deterioration of the characteristic urethane gloss.

For waxing, select a high quality automotive or aircraft waxing product. Do not use a wax containing silicones, as silicone polishes are difficult to remove from surfaces. A buildup of wax on any exterior paint finish will yellow with age; therefore, wax should be removed periodically. Generally, aliphatic naphtha is adequate and safe for this purpose.

NOTE

Before returning the airplane to service, remove all maskings and coverings, and relubricate as necessary.

WINDOWS AND WINDSHIELDS

WINDOWS

The plastic windows should be kept clean and waxed. To prevent scratches, wash the windows carefully with plenty of mild soap and water, using the palm of the hand to dislodge dirt and mud. Flood the surface with clean water to rinse away dirt and soap. After rinsing, dry the windows with a clean, moist chamois. Rubbing the surface of the plastic with a dry cloth should be avoided, as it builds up an electrostatic charge on the surface, which attracts dust particles.

If oil or grease is present on the surface of the plastic, remove it with a cloth moistened with kerosene, aliphatic naphtha, or hexene, then rinse the surface with clear water. Never use gasoline, benzine, alcohol, acetone, carbon tetrachloride, fire-extinguisher or anti-ice fluid, lacquer thinner, or glass cleaner. These materials will soften the plastic and may cause it to craze.

If it is desired to use a commercial cleaner to clean the plastic windows, use only cleaners that are approved by Raytheon Aircraft Company and follow the directions on the container. It will not be necessary to apply wax to windows after use of the above commercial cleaners, as these cleaners contain wax, as well as cleaning agents.

After thoroughly cleaning, wax the surface with a good grade of commercial wax that does not have an acrylic base. The wax will fill in minor scratches and help prevent further scraping. Apply a thin, even coat of wax and bring it to a high polish by rubbing lightly with a clean, dry, soft, flannel cloth. Do not use a power buffer; the heat generated by the buffing pad may soften the plastic.

POLARIZED CABIN WINDOWS

The polarized cabin windows consist of two plastic window panels installed with the polarized surfaces facing each other in a sealed assembly. To clean the interior exposed surface of the window requires only careful application of the practices for cleaning plastic windows. If it should become necessary to clean the inner surface of the sealed assembly and the inside of the pressure glass, the sealed assembly may be removed by removing the escucheon, four screws, and the sealed assembly. Clean the interior windows and reinstall the sealed assembly and escucheon.
WINDSHIELDS

Glass windshields with antistatic coating should be cleaned as follows:

1. Wash excessive dirt and other substances from the glass with clean water.
2. Clean the windshield with mild soap and water or a 50/50 solution of isopropyl alcohol and water. Wipe the glass surface in a straight rubbing motion with a soft cloth or sponge. Never use any abrasive materials or any strong acids or bases to clean the glass.
3. Rinse the glass thoroughly and dry, but do not apply wax.

SURFACE DEICE BOOT CLEANING

The deice boots are made of soft, flexible stock, which may be damaged if fuel hoses are dragged over the surface of the boots or if ladders and platforms are rested against them. Keep deice boots free of oil, fuel, paint remover, solvents, and other injurious substances. Deice boots should be cleaned regularly with a mild soap and water solution. The temperature of the solution should not exceed 180°F.

ENGINE

Clean the engine with neutral solvent. Spray or brush the fluid over the engine, then wash off with water and allow to dry.

Do not use solutions which may attack rubber or plastic. Protect engine switches, controls and seals; fluid applied at high pressure can unseat seals, resulting in contamination of the sealed systems.

INTERIOR CARE

To remove dust and loose dirt from the upholstery, headliner, and carpet, clean the interior regularly with a vacuum cleaner.

Blot up any spilled liquid promptly with cleansing tissue or rags. Do not pat the spot. Press the blotting material firmly and hold it for several seconds. Continue blotting until no more liquid is taken up. Scratch off sticky materials with a dull knife, then spot clean the area.

Oily spots may be cleaned with household spot removers, used sparingly. Before using any solvent, read the instructions on the container and test it on an obscure place on the fabric to be cleaned. Never saturate the fabric with a volatile solvent; it may damage the padding and backing materials.

Soiled upholstery and carpet may be cleaned with foam-type detergent, used according to the manufacturer's instructions. To minimize wetting the fabric, keep the foam as dry as possible and remove it with a vacuum cleaner.

Failure to properly position the end of the actuator arm in the semicircular slot of the override assembly will prevent full travel of the actuator and could result in damage to the electrical actuator.

CONSUMABLE MATERIALS

Refer to the Beech King Air 200 Series Maintenance Manual for consumables (type and brand name) approved for use in the Beech Super King Air B200 & B200C.
LAMP REPLACEMENT GUIDE

EXTERIOR

<table>
<thead>
<tr>
<th>Lamp Type</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entry Light (under Left Wing)</td>
<td>MS24513-4174</td>
</tr>
<tr>
<td>Wing Ice Light</td>
<td>A7079B-24</td>
</tr>
<tr>
<td>Landing Lights</td>
<td>4596</td>
</tr>
<tr>
<td>Rotating Beacons (Upper/Lower)</td>
<td>A7079B-24 / A7079B-25</td>
</tr>
<tr>
<td>Strobe Light Flash Tubes</td>
<td>55-0221-1</td>
</tr>
<tr>
<td>Empennage Floodlight</td>
<td>DS0079-BJ</td>
</tr>
<tr>
<td>Tail Navigation Light</td>
<td>A-2064-1683</td>
</tr>
<tr>
<td>Taxi Light</td>
<td>4587</td>
</tr>
<tr>
<td>Wing Navigation Light</td>
<td>A7512-24</td>
</tr>
<tr>
<td>Wing-tip Recognition Light</td>
<td>1982</td>
</tr>
</tbody>
</table>

PASSENGER COMPARTMENT

<table>
<thead>
<tr>
<th>Lamp Type</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aft Dome and Baggage Compartment Light</td>
<td>303</td>
</tr>
<tr>
<td>Aisle Light</td>
<td>MS25231-313</td>
</tr>
<tr>
<td>Spar Cover Light</td>
<td>1495</td>
</tr>
<tr>
<td>Cabin Sign Light</td>
<td>D158-100-4</td>
</tr>
<tr>
<td>Cabin Door Observer and Overhead Lights</td>
<td>1864</td>
</tr>
<tr>
<td>Cabin Table Light</td>
<td>1309</td>
</tr>
<tr>
<td>Flood Light</td>
<td>MS35478-1683</td>
</tr>
<tr>
<td>Fluorescent Light Tube</td>
<td>5108WW</td>
</tr>
<tr>
<td>O.A.T. Light</td>
<td>MS25237-327</td>
</tr>
<tr>
<td>Reading and Chair Light</td>
<td>1864</td>
</tr>
<tr>
<td>Step Light</td>
<td>313</td>
</tr>
<tr>
<td>Threshold Light</td>
<td>313</td>
</tr>
<tr>
<td>Window Fluorescent light</td>
<td>PW 20B or 6900026</td>
</tr>
</tbody>
</table>

FLIGHT COMPARTMENT

<table>
<thead>
<tr>
<th>Lamp Type</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>All Edge-lighted Placards and Panels</td>
<td>D158-100-5</td>
</tr>
<tr>
<td>Cabin Door Lock Light</td>
<td>1864</td>
</tr>
<tr>
<td>Fuel Quantity Indicator Light</td>
<td>267</td>
</tr>
<tr>
<td>Glareshield Light</td>
<td>1864</td>
</tr>
<tr>
<td>Instrument Indirect Lights (Red/White)</td>
<td>1864R / 1864</td>
</tr>
<tr>
<td>Map Overhead Light (Red/White)</td>
<td>1309 / 1495</td>
</tr>
<tr>
<td>Map Overhead Floodlight</td>
<td>303</td>
</tr>
<tr>
<td>Lights for all other Instruments, Indicators, Annunciators, and Switches.</td>
<td>327</td>
</tr>
</tbody>
</table>